Fair Clustering Tutorial

Outline

Clustering paradigms + short introduction to algorithmic fairness

Demographic (group) fairness in clustering

>Individual fairness in clustering

>Algorithmic Aspect: The **two-stage approach** for solving fair clustering

> Overlooked issues in fair clustering.

Clustering (ML + Data Analysis)

Clustering (ML + Data Analysis)

Explore the data, Reveal existing structure, group similar points to one another, etc

Clustering (ML + Data Analysis)

Explore the data, Reveal existing structure, group similar points to one another, etc

Given Set of Data Points:

Clustering (ML + Data Analysis)

Explore the data, Reveal existing structure, group similar points to one another, etc

>Clustering (ML + Data Analysis)

Explore the data, Reveal existing structure, group similar points to one another, etc

>Clustering (Operations Research)

Clustering (ML + Data Analysis)

Explore the data, Reveal existing structure, group similar points to one another, etc

Clustering (Operations Research) '

Allocating a collection of facilities or fire stations to serve a collection of users

>Clustering (ML + Data Analysis)

Explore the data, Reveal existing structure, group similar points to one another, etc

Clustering (Operations Research) '

Allocating a collection of facilities or fire stations for a collection of users

Clustering (ML + Data Analysis)

Explore the data, Reveal existing structure, group similar points to one another, etc

Clustering (Operations Research) '

Allocating a collection of facilities or fire stations for a collection of users

Center-Based Clustering

Spectral Clustering

Correlation Clustering

Hierarchical Clustering

Center-Based Clustering

The cluster is decided by choosing k centers center

 \succ Includes k-means, k-median, and k-center clustering

- Input:
 - Set of points: \mathcal{C}
 - Distance between points: $\forall i, j \in C$ we have d(i, j) (which is a *Metric*)
 - \circ <u>Number of Clusters:</u> k

- Input:
 - Set of points: \mathcal{C}
 - Distance between points: $\forall i, j \in C$ we have d(i, j) (which is a *Metric*)
 - <u>Number of Clusters:</u> k
- Output:
 - Set of centers: $S(|S| \le k)$
 - Assignment Function: $\varphi: \mathcal{C} \to S$ (assigning points to centers)

Objective Functions:

• *k*-center: $\min_{S,\varphi} \max_{j \in C} d(j,\varphi(j))$

Objective Functions:

• *k*-center: $\min_{S,\varphi} \max_{j \in C} d(j,\varphi(j))$ Minimizes the maximum distance (sensitive to outliers)

Objective Functions:

• *k*-center: $\min_{S,\varphi} \max_{j \in C} d(j,\varphi(j))$ Minimizes the maximum distance (sensitive to outliers)

•*k*-median: $\min_{S,\varphi} \sum_{j \in C} d(j,\varphi(j))$

Objective Functions:

• *k*-center: $\min_{S,\varphi} \max_{j \in C} d(j,\varphi(j))$ Minimizes the maximum distance (sensitive to outliers)

• *k*-median: $\min_{S,\varphi} \sum_{j \in C} d(j,\varphi(j))$ Minimizes the sum of the distances (more noise-tolerant)

Objective Functions:

• *k*-center: $\min_{S,\varphi} \max_{j \in C} d(j,\varphi(j))$ Minimizes the maximum distance (sensitive to outliers)

• k-median: $\min_{S,\varphi} \sum_{j \in C} d(j, \varphi(j))$ Minimizes the sum of the distances (more noise-tolerant)

• *k*-means:
$$\min_{S,\varphi} \sum_{j \in C} d^2(j,\varphi(j))$$

Objective Functions:

• *k*-center: $\min_{S,\varphi} \max_{j \in C} d(j,\varphi(j))$ Minimizes the maximum distance (sensitive to outliers)

• *k*-median: $\min_{S,\varphi} \sum_{j \in C} d(j, \varphi(j))$ Minimizes the sum of the distances (more noise-tolerant)

• *k*-means:
$$\min_{S,\varphi} \sum_{j \in C} d^2(j,\varphi(j))$$

Minimizes the sum of the square of the distances (more weight on outliers because of squaring)

Objective Functions:

• *k*-center: $\min_{S,\varphi} \max_{j \in C} d(j,\varphi(j))$ Minimizes the maximum distance (sensitive to outliers)

• *k*-median: $\min_{S,\varphi} \sum_{j \in C} d(j, \varphi(j))$ Minimizes the sum of the distances (more noise-tolerant)

• *k*-means: $\min_{S,\varphi} \sum_{j \in C} d^2(j,\varphi(j))$

Minimizes the sum of the square of the distances (more weight on outliers because of squaring)

In General:
$$\min_{S,\varphi} \| [d(1,\varphi(1)), d(2,\varphi(2)), \dots, d(n,\varphi(n))] \|_p$$

 $p = \infty \rightarrow k$ -center, $p = 1 \rightarrow k$ -median, $p = 2 \rightarrow k$ -means

• In the *absence of constraints*, the assignment function is <u>trivial</u> (assign each point to its nearest center)

• In the *absence of constraints*, the assignment function is <u>trivial</u> (assign each point to its nearest center)

• In the *absence of constraints*, the assignment function is trivial (assign each point to its nearest center)

• <u>Constraints</u> can make the assignment non-trivial

• In the *absence of constraints*, the assignment function is trivial (assign each point to its nearest center)

• In the *absence of constraints*, the assignment function is trivial (assign each point to its nearest center)

• Most Fair Clustering = Clustering subject to *fairness constraints* -> Assigning points to centers is not trivial

Spectral Clustering

 \triangleright Points are vertices in a graph G = (V, E)

 $\succ \forall i, j: w_{ij} \ge 0, w_{ij}$ is the similarity between *i* and *j*

Spectral Clustering

 \triangleright Points are vertices in a graph G = (V, E)

 $\succ \forall i, j: w_{ij} \ge 0, w_{ij}$ is the similarity between *i* and *j*

Cluster (partition) the graph so that the edges between points in different clusters have low weight

From the above, we have a graph cut problem

Spectral Clustering: Formal Definition

Points are vertices in a graph G = (V, E)

 $\succ \forall i, j: w_{ij} \ge 0, w_{ij}$ is the similarity between *i* and *j*

$$\triangleright A, B \subset V, cut(A, B) = \sum_{i \in A, j \in B} w_{ij}$$

Spectral Clustering: Formal Definition

 \succ Points are vertices in a graph G = (V, E)

 $\succ \forall i, j: w_{ij} \ge 0, w_{ij}$ is the similarity between *i* and *j*

➢ Objective Functions:

• Given graph G = (V, E) and number of clusters $k \rightarrow$ Partition V into C_1, \dots, C_k min $\sum_{i=1}^k \frac{cut(C_i, V \setminus C_i)}{size(C_i)}$, $size(C_i)=??$

Spectral Clustering: Formal Definition

Points are vertices in a graph G = (V, E)

 $\succ \forall i, j: w_{ij} \ge 0, w_{ij}$ is the similarity between *i* and *j*

➢ Objective Functions:

• Given graph G = (V, E) and number of clusters $k \rightarrow$ Partition V into C_1, \dots, C_k min $\sum_{i=1}^k \frac{cut(C_i, V \setminus C_i)}{size(C_i)}$, $size(C_i)=??$

(1) $size(C_i) = |C_i| \rightarrow \min RatioCut(C_1, ..., C_k) = \sum_{i=1}^k \frac{cut(C_i, V \setminus C_i)}{|C_i|}$ (2) $size(C_i) = \sum_{j \in C_i} d_j$ where $d_j = \sum_j' w_{jj}' \rightarrow \min NormalizedCut(C_1, ..., C_k) = \sum_{i=1}^k \frac{cut(C_i, V \setminus C_i)}{\sum_{j \in C_i} d_j}$

Correlation Clustering

 \triangleright Points are vertices in a graph G = (V, E)

∀i, j: $w_{ij}^+ ≥ 0, w_{ij}^- ≥ 0$,
 - w_{ij}^+ is the degree to which *i* and *j* are similar
 - w_{ij}^- is the degree to which *i* and *j* are different

Correlation Clustering

 \triangleright Points are vertices in a graph G = (V, E)

∀i, j: w_{ij}⁺ ≥ 0, w_{ij}⁻ ≥ 0,
-w_{ij}⁺ is the degree to which *i* and *j* are similar
-w_{ij}⁻ is the degree to which *i* and *j* are different
Cluster (partition) the graph so that you get:
-large w_{ij}⁺ edges within a cluster
-large w_{ij}⁻ edges between different clusters

Correlation Clustering

Points are vertices in a graph G = (V, E)

 $\triangleright \forall i, j: w_{ij}^+ \ge 0, w_{ij}^- \ge 0,$

 $-w_{ij}^+$ is the degree to which *i* and *j* are **similar**

 $-w_{ij}^{-}$ is the degree to which *i* and *j* are **different**

Cluster (partition) the graph so that you get

-low weight edges between different clusters -high weight edges within a cluster Number of clusters k does NOT need to be given in correlation clustering

Objective Function:

Given graph $G = (V, E) \rightarrow$ Partition V into C_1, \dots, C_k max $\sum_{i,j:same\ cluster} w_{ij}^+ + \sum_{i,j:\ different\ clusters} w_{ij}^-$

 \geq Like correlation clustering, you don't need to set k (the number of clusters)

The output groups the points in a tree (dendrogram), grouping points at different levels

Given Set of Data Points:

00 00 00 00

 \geq Like correlation clustering, you don't need to set k (the number of clusters)

The output groups the points in a tree (dendrogram), grouping points at different levels

 \geq Like correlation clustering, you don't need to set k (the number of clusters)

The output groups the points in a tree (dendrogram), grouping points at different levels

>agglomerative clustering (common traditional method):

-bottom-up approach: group similar points together forming a cluster, then group similar clusters and so on.

>agglomerative clustering has is NOT optimizing an objective function

 \rightarrow Makes it hard to know the quality

>agglomerative clustering has is NOT optimizing an objective function

 \rightarrow Makes it hard to know the quality

>[Dasgupta, 2016] defines a cost function for hierarchical clustering:

-Given G = (V, E) with w_{ij} specifiving the similarity between *i* and *j* Objective Function:

min $\sum_{i,j} w_{ij} \times (\text{#of descendents of lowest commen ancestor of } i \text{ and } j)$

-the objective places higher penalty when separating points higher in the tree

Further objectives for hierarchical clustering were also introduced [Moseley & Wang, 2017 ; Cohen-Addad et al, 2018].

-All are NP-hard

Center-Based Clustering

Spectral Clustering

Correlation Clustering

Hierarchical Clustering

-All are NP-hard

Center-Based Clustering

Spectral Clustering

-In polynomial time we can only approximate the optimal objective:

Correlation Clustering

➢ Hierarchical Clustering

-All are NP-hard

Center-Based Clustering

Spectral Clustering

Correlation Clustering

➢ Hierarchical Clustering

-In polynomial time we can only approximate the optimal objective:

min objective value is OPT \rightarrow solve for \widehat{OPT} , $\widehat{OPT} \leq \alpha OPT$ α is the approximation ratio (clearly $\alpha > 1$)

Algorithmic Fairness

>Much of decision making is done at least partly using algorithms.

Algorithmic Fairness

>Much of decision making is done at least partly using algorithms.

Examples:

-loan approval [Leo et al, 2018].

-recidivism prediction[Goel et al, 2018]

-health care: receiving limited resources [Wilder et al, 2018], kidney exchange [Dickerson et al, 2018]

Algorithmic Fairness

>Much of decision making is done at least partly using algorithms.

Documented cases of algorithmic bias [O'Neil 2016; Kearns & Roth 2019].

Substantial progress and interest in algorithmic fairness.

For a point *i*, its **distance from the center** $d(i, \phi(i))$:

-closer to the center \rightarrow better represented by the center (ML)

-closer to the center \rightarrow less travel distance to the facility (OR)

 \rightarrow points want to be closer the center

How does a fairness guarantee over the distance look like? How can we achieve that?

- what if a group is consistently away from the center?

 \succ Clustering partitions the set of points C into clusters C_1, C_2, \dots, C_k

-different clusters will be processed differently, enjoy different outcomes, etc

-suppose one demographic is under-represented in a cluster or over-represented in another.

 \succ Clustering partitions the set of points C into clusters C_1, C_2, \dots, C_k

-different clusters will be processed differently, enjoy different outcomes, etc

-suppose one demographic is under-represented in a cluster or over-represented in another.

 \succ Clustering partitions the set of points C into clusters C_1, C_2, \dots, C_k

-different clusters will be processed differently, enjoy different outcomes, etc

-suppose one demographic is under-represented in a cluster or over-represented in a nother.

 \succ Clustering partitions the set of points C into clusters C_1, C_2, \dots, C_k

-different clusters will be processed differently, enjoy different outcomes, etc

-suppose one demographic is under-represented in a cluster or over-represented in another.

-suppose the clustering assigns points which are not faraway from one another to different clusters.

 \succ Clustering partitions the set of points C into clusters C_1, C_2, \dots, C_k

-different clusters will be processed differently, enjoy different outcomes, etc

-suppose one demographic is under-represented in a cluster or over-represented in a nother.

-suppose the clustering assigns points which are not faraway from one another to different clusters.

THANK YOU!