
Fair Clustering Tutorial



Outline 
ØClustering paradigms + short introduction to algorithmic fairness 

ØDemographic (group) fairness in clustering

ØIndividual fairness in clustering

ØAlgorithmic Aspect: The two-stage approach for solving fair clustering

ØOverlooked issues in fair clustering.
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Clustering Paradigms

ØCenter-Based Clustering

ØSpectral Clustering 

ØCorrelation Clustering 

ØHierarchical Clustering



Center-Based Clustering
Ø the cluster is decided by choosing 𝑘 centers à each point is then assigned to its closest 
center

ØIncludes 𝑘-means, 𝑘-median, and 𝑘-center clustering 
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§ Input: 
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Formalizing Center-Based Clustering
§ Input: 

◦ Set of points: 𝒞

◦ Distance between points: ∀𝑖, 𝑗 ∈ 𝒞 we have 𝑑 𝑖, 𝑗 (which is a Metric)

◦ Number of Clusters: 𝑘

§Output: 
◦ Set of centers: 𝑆 ( 𝑆 ≤ 𝑘 )

◦ Assignment Function: 𝜑: 𝒞 → 𝑆 (assigning points to centers)
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Formalizing Center-Based Clustering
Objective Functions:

§𝑘-center: min
#,%

max
&∈𝒞

𝑑(𝑗, 𝜑(𝑗))
Minimizes the maximum distance (sensitive to outliers)

§𝑘-median: min
#,%

∑&∈𝒞 𝑑(𝑗, 𝜑(𝑗))
Minimizes the sum of the distances (more noise-tolerant)

§𝑘-means: min
.,/

∑0∈𝒞 𝑑9(𝑗, 𝜑(𝑗))
Minimizes the sum of the square of the distances (more weight on outliers because of squaring)

§ In General: min
.,/

𝑑 1, 𝜑 1 , 𝑑 2, 𝜑 2 , … , 𝑑 𝑛, 𝜑 𝑛 :
𝑝 = ∞ → 𝑘-center, 𝑝 = 1 → 𝑘-median, 𝑝 = 2 → 𝑘-means 
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◦ In the absence of constraints, the assignment function is trivial (assign each point to its nearest center)

◦ Constraints can make the assignment non-trivial

◦ Most Fair Clustering = Clustering subject to fairness constraints à Assigning points to centers is not trivial

clustering with 𝑘=2

Constraint: at least 3 
points in each cluster 
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Spectral Clustering
ØPoints are vertices in a graph 𝐺 = (𝑉, 𝐸)
Ø∀𝑖, 𝑗: 𝑤,- ≥ 0, 𝑤,- is the similarity between 𝑖 and 𝑗

ØCluster (partition) the graph so that the edges between points in 
different clusters have low weight

ØFrom the above, we have a graph cut problem 
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Spectral Clustering: Formal Definition
ØPoints are vertices in a graph 𝐺 = (𝑉, 𝐸)
Ø∀𝑖, 𝑗: 𝑤,- ≥ 0, 𝑤,- is the similarity between 𝑖 and 𝑗

ØObjective Functions:
•Given graph 𝐺 = 𝑉, 𝐸 and number of clusters 𝑘à Partition 𝑉 into 
𝐶8, … , 𝐶9

min ∑+,-. /01(3!,4\3!)
7+89(3!)

, 𝑠𝑖𝑧𝑒 𝐶+ =?? 

(2) 𝑠𝑖𝑧𝑒 𝐶6 = ∑7∈9% 𝑑7 where 𝑑7 = ∑7: 𝑤77: àmin 𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅𝑪𝒖𝒕 𝐶;, … , 𝐶< = ∑6=;< >?@(9%,A\9%)
∑&∈(% C&

(1) 𝑠𝑖𝑧𝑒 𝐶6 = 𝐶6 àmin 𝑹𝒂𝒕𝒊𝒐𝑪𝒖𝒕 𝐶;, … , 𝐶< = ∑6=;< >?@(9%,A\9%)
|9%|



Correlation Clustering
ØPoints are vertices in a graph 𝐺 = (𝑉, 𝐸)
Ø∀𝑖, 𝑗: 𝑤:0; ≥ 0,𝑤:0< ≥ 0, 

-𝑤:0; is the degree to which 𝑖 and 𝑗 are similar
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Correlation Clustering
ØPoints are vertices in a graph 𝐺 = (𝑉, 𝐸)

Ø∀𝑖, 𝑗: 𝑤!"# ≥ 0,𝑤!"$ ≥ 0, 

-𝑤!"# is the degree to which 𝑖 and 𝑗 are similar

-𝑤!"$ is the degree to which 𝑖 and 𝑗 are different

ØCluster (partition) the graph so that you get 

-low weight edges between different clusters 
-high weight edges within a cluster

ØObjective Function:
Given graph 𝐺 = 𝑉, 𝐸 à Partition 𝑉 into 𝐶/, … , 𝐶0
max ∑1,2:3456 7893:6;𝑤12< + ∑1,2: =1>>6;6?: 7893:6;3𝑤12@

Number of clusters 𝑘 does 
NOT need to be given in 
correlation clustering



Hierarchical Clustering
ØLike correlation clustering, you don’t need to set 𝑘 (the number of clusters)

ØThe output groups the points in a tree (dendrogram), grouping points at 
different levels

Given Set of 
Data Points:



Hierarchical Clustering
ØLike correlation clustering, you don’t need to set 𝑘 (the number of clusters)

ØThe output groups the points in a tree (dendrogram), grouping points at 
different levels

Hierarchical Clustering 
Output: 



Hierarchical Clustering
ØLike correlation clustering, you don’t need to set 𝑘 (the number of clusters)

ØThe output groups the points in a tree (dendrogram), grouping points at 
different levels

Øagglomerative clustering (common traditional method):

-bottom-up approach: group similar points together forming a cluster, 
then group similar clusters and so on. 
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Hierarchical Clustering
Øagglomerative clustering has is NOT optimizing an objective function 
à Makes it hard to know the quality 

Ø[Dasgupta, 2016] defines a cost function for hierarchical clustering: 

-Given 𝐺 = (𝑉, 𝐸) with 𝑤)* specifiying the similarity between 𝑖 and 𝑗
Objective Function:

min∑),*𝑤)* × (#of descendents of lowest commen ancestor of 𝑖 and 𝑗)
-the objective places higher penalty when separating points higher in the tree 

ØFurther objectives for hierarchical clustering were also introduced [Moseley & Wang, 2017 ; 
Cohen-Addad et al, 2018]. 
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Clustering Paradigms

ØCenter-Based Clustering

ØSpectral Clustering 

ØCorrelation Clustering 

ØHierarchical Clustering

-All are NP-hard

-In polynomial time we can only 
approximate the optimal objective:

min objective value is 𝑂𝑃𝑇
à solve for Q𝑂𝑃𝑇, 

Q𝑂𝑃𝑇 ≤ 𝛼𝑂𝑃𝑇
𝛼 is the approximation ratio (clearly 
𝛼 > 1) 
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Algorithmic Fairness 
ØMuch of decision making is done at least partly using algorithms. 

Examples: 
-loan approval [Leo et al, 2018]. 

-recidivism prediction[Goel et al, 2018] 
-health care: receiving limited resources [Wilder et al, 2018], 

kidney exchange [Dickerson et al, 2018]



Algorithmic Fairness 
ØMuch of decision making is done at least partly using algorithms. 

ØDocumented cases of algorithmic bias [O’Neil 2016; Kearns & Roth 2019].

ØSubstantial progress and interest in algorithmic fairness.   



Some Considerations for Fairness in Clustering 

ØFor a point 𝑖, its distance from the center 𝑑(𝑖, 𝜙(𝑖)):
-closer to the center àbetter represented by the center (ML)

-closer to the center àless travel distance to the facility (OR) 

à points want to be closer the center 

Ø How does a fairness guarantee over the distance look like? How can we 
achieve that? 

- what if a group is consistently away from the center?
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THANK YOU!


