Fair Clustering Tutorial




Outline

» Clustering paradigms + short introduction to algorithmic fairness

» Demographic (group) fairness in clustering

»Individual fairness in clustering

» Algorithmic Aspect: The two-stage approach for solving fair clustering

»Overlooked issues in fair clustering.
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Clustering Paradigms

» Center-Based Clustering
»Spectral Clustering
» Correlation Clustering

» Hierarchical Clustering



Center-Based Clustering

» the cluster is decided by choosing k centers = each point is then assigned to its closest
center

>Includes k-means, k-median, and k-center clustering
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Formalizing Center-Based Clustering

= [nput:
o Set of points: C

o Distance between points: Vi, j € C we have d(i,j) (which is a Metric)

o Number of Clusters: k

= OQutput:
o Set of centers: S (|S| < k)

o Assignment Function: @: C — S (assigning points to centers)
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Formalizing Center-Based Clustering

Objective Functions:

= k-center: rr51,1g£1 I}IEEJICX aiy,e())

Minimizes the maximum distance (sensitive to outliers)

= k-median: r?jpn Zjee d(j,e())

Minimizes the sum of the distances (more noise-tolerant)

= k-means: rsr}jpn Z]-Ec d* U, e())

Minimizes the sum of the square of the distances (more weight on outliers because of squaring)

=|n General: r?jpn | [d(1,9(D)), d(2,¢(2)),..., d(n,e@m))] Hp

p = © = k-center,p = 1 = k-median, p = 2 = k-means
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o In the absence of constraints, the assignment function is trivial (assign each point to its nearest center)
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o Constraints can make the assignment non-trivial
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o Most Fair Clustering = Clustering subject to fairness constraints = Assigning points to centers is not trivial
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Spectral Clustering

»Points are vertices in a graph ¢ = (V,E)

»Vi,jiw;j = 0, wy; is the similarity between i and j

» Cluster (partition) the graph so that the edges between points in
different clusters have low weight

»From the above, we have a graph cut problem
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Spectral Clustering: Formal Definition

»Points are vertices in a graph ¢ = (V,E)

»Vi,jiw;j = 0, wy; is the similarity between i and j

» Obijective Functions:

* Given graph G = (V, E) and number of clusters k = Partition V into
Cy, ., Co

cut(Ci,V\C;)
size(C;)

min Zﬁ‘zl , Size(C;)="?

(1) size(C;) = |C;| > min RatioCut(Cy, ...,Cx) = X4 C“t<|CCi'i‘|’\Ci>

k  cut(Ci,V\C;)
‘.
' ZjECi d]

(2) size(C;) = Xjec, d; where d; = ¥ wi; > min NormalizedCut(C, ...,C) = X



Correlation Clustering
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»>Vi,j: WUZOW > 0,
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»>Vi,j: WUZOWUZO
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Correlation Clustering

»Points are vertices ina graph G = (V,E)

»Vi,jiw; = 0,w;; =0,
-w;’ is the degree to which i and j are similar
-w;; is the degree to which i and j are different

» Cluster (partition) the graph so that you get
-low weight edges between different clusters Number of clusters k does

-high weight edges within a cluster NOT need to be given in

correlation clustering
» Objective Function:

Given graph G = (V, E) - Partition V into Cy, ..., Cy,

+ —
max Zi,j:same cluster Wij + Zi,j: dif ferent clusters Wij



Hierarchical Clustering

» Like correlation clustering, you don’t need to set k (the number of clusters)

»The output groups the points in a tree (dendrogram), grouping points at
different levels
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Hierarchical Clustering

» Like correlation clustering, you don’t need to set k (the number of clusters)

»The output groups the points in a tree (dendrogram), grouping points at
different levels

> agglomerative clustering (common traditional method):

-bottom-up approach: group similar points together forming a cluster,
then group similar clusters and so on.
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»agglomerative clustering has is NOT optimizing an objective function

— Makes it hard to know the quality




Hierarchical Clustering

»agglomerative clustering has is NOT optimizing an objective function
— Makes it hard to know the quality

» [Dasgupta, 2016] defines a cost function for hierarchical clustering:
-Given G = (V, E) with w;; specifiying the similarity between i and j

Objective Function:

min Y;; ; w;; X (#of descendents of lowest commen ancestor of i and j)

-the objective places higher penalty when separating points higher in the tree

> Further objectives for hierarchical clustering were also introduced [Moseley & Wang, 2017 ;
Cohen-Addad et al, 2018].
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Clustering Paradigms

-All are NP-hard

» Center-Based Clustering
-In polynomial time we can only

»Spectral Clustering approximate the optimal objective:

min objective value is OPT
- solve for OPT,

OPT < aOPT
> Hierarchical Clustering a is the approximation ratio (clearly

a>1)

» Correlation Clustering
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Algorithmic Fairness

» Much of decision making is done at least partly using algorithms.

Examples:

-loan approval [Leo et al, 2018].
-recidivism prediction|Goel et al, 2018]
-health care: receiving limited resources [Wilder et al, 2018],

kidney exchange [Dickerson et al, 2018]



Algorithmic Fairness

» Much of decision making is done at least partly using algorithms.
» Documented cases of algorithmic bias [O’Neil 2016; Kearns & Roth 2019].

»Substantial progress and interest in algorithmic fairness.



Some Considerations for Fairness in Clustering

»For a point i, its distance from the center d (i, ¢ (i)):
-closer to the center =2 better represented by the center (ML)
-closer to the center = less travel distance to the facility (OR)

— points want to be closer the center

» How does a fairness guarantee over the distance look like? How can we
achieve that?

- what if a group is consistently away from the center?
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THANK YOU!




