
Demographic Fairness:
Balance



Inspiration
Disparate Impact [FFMSV 15]

◦ Griggs vs Duke Power Co.: used non-racial features (notably, employee testing) as a proxy for race in 
order to discriminate against black employees in promotion
◦ Duke Power Co. lost in the Supreme court, and this was deemed unlawful
◦ This ruling and general philosophy helped promote affirmative action and anti-discrimination laws
◦ Why is this bad:

It had a “disproportionate and adverse impact on certain individuals.”
In other words, disparate impact.

◦ Applied to ML: Ensure that the impact of a system across protected groups is proportionate.
◦ Applied to Clustering:

◦ The impact on a group is measured by how many individuals of that group are in each cluster.
◦ Thus, we must ensure that the number of individuals from each group in each cluster is proportional to group size 

https://arxiv.org/abs/1412.3756


Demographic 
Fairness - Balance

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝐶𝐶1 = 1
Recall: we are given points 𝒞𝒞 in a metric 
space. We pick centers 𝑆𝑆 ⊆ 𝒞𝒞 and create a 
map 𝜑𝜑:𝒞𝒞 → 𝑆𝑆. We also represent the 
clustering as a partitioning of points S.

Assume the points in 𝒞𝒞 are given colors red 
or blue, representing protected classes.

For a  cluster 𝐶𝐶 :

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝐶𝐶 = min
#𝑟𝑟𝑏𝑏𝑟𝑟(𝐶𝐶)
#𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐶𝐶)

,
#𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐶𝐶)
#𝑟𝑟𝑏𝑏𝑟𝑟(𝐶𝐶)

For a clustering 𝑆𝑆:
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑆𝑆 = min

𝐶𝐶∈𝑆𝑆
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐶𝐶)

We want balance to be high (close to 1).

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝐶𝐶2 = 1

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝐶𝐶3 = 1/2

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝐶𝐶4 = 1/2

Before: 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑆𝑆 = 1/2

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝐶𝐶2 = 1

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝐶𝐶3 = 1

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝐶𝐶4 = 1

After: 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑆𝑆 = 1



Results for Balance [CKLV 18]
Lemma: Let 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝒞𝒞 ≥ 𝑏𝑏/𝑟𝑟 for minimum integral 𝑏𝑏 and 𝑟𝑟. Then we can find a 
clustering 𝑆𝑆 with balance at least 𝑏𝑏/𝑟𝑟 and maximum cluster size 𝑏𝑏 + 𝑟𝑟.

◦ 7 red, 10 blue
◦ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝒞𝒞 ≥ 3/5

Method: Using the previous lemma, create a fairlet decomposition 𝑌𝑌, which is a fair 
clustering with small (but possibly too many) clusters. Run a vanilla clustering algorithm 
on the fairlets centers as points duplicated to equal the size of the fairlet, call this set 𝑌𝑌′. 
The clustering is 𝑆𝑆.

Structural result: for k-median and k-center, let the objective value be ψ:

ψ 𝒞𝒞, 𝑆𝑆 =ψ(𝒞𝒞,𝑌𝑌) + ψ(𝑌𝑌′,S)

𝑌𝑌

× 2
× 8

× 5

× 2
𝑌𝑌′

https://arxiv.org/abs/1802.05733


Further Results for Balance [CKLV 18]

Hardness: it is NP-hard to optimally find a 1/𝑡𝑡′-balanced k-median clustering. 

Balanced 
problem 
solved

Balance 
achieved

Approximation 
factor

Subroutine 
used

Soubroutine
approximation

1-center 1 3 1-center 2

k-center 1/𝑡𝑡′ 4 k-center 2

k-median 1 2 + 3 + 𝜖𝜖 k-median 1 + 3 + 𝜖𝜖
k-median 1/𝑡𝑡′ 𝑡𝑡′ + 1 + 3 + 𝜖𝜖 k-median 1 + 3 + 𝜖𝜖

https://arxiv.org/abs/1802.05733


Fairness and Privacy [RS 18]
General fairness results

◦ Finds a 12-approximate fairlet decomposition on any number 
of colors

◦ Implies:
◦ 14-approximation for k-center
◦ 15-approximationfor k-supplier

Fair and private clustering
◦ Privacy: lower bounds on the size of clusters
◦ Results:

◦ 40-approximate private and fair k-center
◦ 41-approximate private and fair k-supplier

Strongly private clustering
◦ Strong privacy: lower bounds on number of points of a 

color per cluster
◦ Results

◦ 4-approximate strongly private k-center
◦ 5-approximate strongly private k-supplier

https://arxiv.org/pdf/1802.02497.pdf


Fairness and Essential Fairness [BGKKRSS 19]
General fairness results

◦ 5-approximate fair k-center
◦ 7-approximate fair k-supplier

Essentially fair results
◦ Clusterings with only additive fairness violations:

◦ E.g., you can have one extra red point in a cluster

◦ Results:
◦ 3-approximate essentially fair k-center
◦ 5-approximate essentially fair k-supplier
◦ 3.488-approximate essentially fair facility location
◦ 4.675-approximate essentially fair k-median
◦ 62.856-approximate essentially fair k-means

Fair Essentially Fair

4 red, 8 blue: r/b = 1/2

Vanilla 
clustering 

approximation

Relaxed LP 
solution to fair 

clustering Fractional 
assignment to 
vanilla centers

Round the 
fractional 

assignment

Network flow

https://drops.dagstuhl.de/opus/volltexte/2019/11233/pdf/LIPIcs-APPROX-RANDOM-2019-18.pdf


Fair Spectral Clustering [KSAM 19]
Definition – Stochastic Block Model

◦ There is a fair ground truth clustering
◦ Generate edges of weight +1 according to color and 

ground truth cluster

Fair spectral clustering
◦ Spectral clustering: create a clustering that minimizes 

the value of RatioCut
◦ 𝑅𝑅𝑏𝑏𝑡𝑡𝑅𝑅𝑅𝑅𝐶𝐶𝑏𝑏𝑡𝑡 𝑆𝑆 = ∑𝐶𝐶∈𝑆𝑆

∑𝑒𝑒∈𝐶𝐶×𝑉𝑉\C 𝑤𝑤(𝑒𝑒)
|𝐶𝐶|

, e.g., the sum of the ratios of the 
weights exiting a cluster to the size of the cluster

◦ Proposes a new spectral clustering algorithm:
◦ Bounds the error relative to the ground truth clustering
◦ Uses O(n3) time, O(n2) space

Same color, same cluster: prob a
Same color, different cluster: prob b
Same cluster, different color: prob c
Different cluster, different color: prob d

a > b > c > d

Note: many 
edges omitted

https://arxiv.org/pdf/1901.08668.pdf


Summary - Balance
First introduced as a concept in 2018 [CKLV 18]

◦ They also developed the “fairlet decomposition“ technique and came up with initial results

Many of the best approximations are from [BGKKRSS 19], who studied many clustering 
problems.

Variants explored:
◦ With privacy [RS 18]
◦ Spectral Clustering [KSAM 19]
◦ Essential fairness [BGKKRSS 19]

https://arxiv.org/abs/1802.05733
https://drops.dagstuhl.de/opus/volltexte/2019/11233/pdf/LIPIcs-APPROX-RANDOM-2019-18.pdf
https://arxiv.org/pdf/1802.02497.pdf
https://arxiv.org/pdf/1901.08668.pdf
https://drops.dagstuhl.de/opus/volltexte/2019/11233/pdf/LIPIcs-APPROX-RANDOM-2019-18.pdf


Demographic Fairness:
Bounded Representation



Demographic Fairness –
Bounded Representation 
[BGKKRSS 19]

Instead of requiring perfect balance, we are 
only constrained by given bounds. There are 
multiple versions studied:

α-bounded for constant α:

• Every color must represent at most an α 
fraction of any cluster

α, β-bounded, for vectors α, β:

• For any color 𝑅𝑅 ∈ 1, … , 𝑏𝑏 , color 𝑅𝑅 must 
represent at most an αi fraction of any 
cluster and at least a βi fraction of any 
cluster

A clustering is fair if every cluster satisfies 
the bounded representation constraint. Fair down to α=3/8

Fair down to αred=3/8, αblue=3/8, αgreen=1/4
Fair up to βred=3/8, βblue=3/8, βgreen=1/4 3/8 3/8

1/4

αred αblue αgreen

βred βblue βgreen

https://drops.dagstuhl.de/opus/volltexte/2019/11233/pdf/LIPIcs-APPROX-RANDOM-2019-18.pdf


Mitigating Over-Representation [AEKM 19]
Fairness constraint: general upper bound α

Important technique: create a threshold graph on 
bichromatic edges of weight ≤ ꚍ

Results
◦ General α: 3-approximation with violation 2
◦ α=1/t: 3-approximation with violation 1
◦ α=1/2: 12-approximation with no violation

Solve an LP 
relaxation on 

weights ≤ 3OPT

Filter facilities: 
only select 

distant ones

Here we lose 
some 

approximation 
factor and fairness

Round to an 
integral solution

Caplet decomp. on threshold 
graph (exists) 

Merge caplets 
into a fair 
clustering

https://arxiv.org/pdf/1905.12753.pdf


Fair Correlation Clustering [AEKM 20]
Fairness constraint: general upper bound α (also 
generalizes further)

Definition – correlation clustering
◦ Edges are all +1 or -1
◦ Minimize: the (weighted) sum of the +1 edges between 

clusters and -1 edges within clusters

Fair correlation clustering (on c colors)
◦ α=1/2: 256-approximation
◦ α=1/c: (16.48c2)-approximation 
◦ α=1/t: O(tρ)-approximation for ρ-approximate median 

cost fairlet decomposition

Low cost fairlet
decomposition

Transform 
decomposition 

to weighted 
corr clust

Solve weighted 
corr clust

Expand for 
final clust

Reduces to 
median costs 
fairlets with 

bounded size

Edge sign/weight 
depends on 
majority cut 

edges

https://arxiv.org/pdf/2002.02274.pdf


Fair Hierarchical Clustering [AEKKMMPVW 20]
Fairness constraint: general upper bound α (also 
generalizes further)

Hierarchical clustering objectives
◦ Cost: initial objective, APX-hard
◦ Revenue: dual to cost, const-approximable
◦ Value: cost variant, const-approximable

Results
◦ Cost: O(n5/6log5/4n)-approximation (highly 

combinatorial methods)
◦ Revenue: (1/3-o(1))-approximation if α=1/t or 2 

colors
◦ Value: (2/3-ε)(1-o(1))-approximation

Find a fairlet
decomposition

Run a 
blackbox

vanilla 
hierarchical 
clustering

Extend previous 
methods 

Extend previous 
methods to find 

arbitrary decomp

revenue

Attempt swapping 
points until found 

local approx. 
densest cut

https://arxiv.org/abs/2006.10221


General Bounds, Overlapping Groups [BCFN 19]
Fairness constraint: specific lower and upper 
bound vectors α, β, also vertices can be in 
multiple groups (bounded by Δ)

Fair assignment problem: given a set of centers, 
what is the best way to create a fair clustering by 
assigning points to the centers?

Results
◦ Given a ρ-approximate vanilla k-clustering for the 

p-norm, gives a ρ+2 approximation with additive 
fairness violation 4Δ+3

Find centers 
from a vanilla 

clustering

Solve the fair 
assignment 
relaxed LP

Round using min 
degree bounded 

matroid 
methods

https://papers.nips.cc/paper/2019/file/fc192b0c0d270dbf41870a63a8c76c2f-Paper.pdf


Probabilistic Fair Clustering [EBTD 20]
Fairness constraint: specific lower and upper 
bound vectors α, β

Probabilistic setting
◦ Colors are not given. Each point has a probability of 

being assigned some color
◦ We guarantee that the expected number of each 

color in each cluster is bounded above/below
◦ Addresses any p-norm

Results
◦ Given a vanilla ρ-approximation, there is a ρ+2-

approximation with +1 violation (2 colors)
◦ Given a vanilla ρ-approximation, there is a ρ+2-

approximation with +1 violation (FPT, large clusters)

pblue pred pgreen

pblue +pred +pgreen = 1

For every cluster C, guarantee:
α𝑖𝑖 𝐶𝐶 ≤ 𝐸𝐸 𝑅𝑅 𝐶𝐶 ≤ β𝑖𝑖 𝐶𝐶

Frequency of 
color i in 
cluster C

https://arxiv.org/abs/2006.10916


Fixing a Bounded Cost [EBSD 21]
Fairness constraint: specific lower and upper 
bound vectors α, β
Fair clustering under bounded cost

◦ Fix an upper bound for the clustering cost
◦ Minimize the degree of unfairness for any color (i.e., 

the proportional violation Δ of upper and lower 
bounds)
◦ Utilitarian: minimize the sum of Δs
◦ Egalitarian: minimize the maximum Δ
◦ Leximin: minimize the maximum Δ, then second largest Δ, …

Results
◦ Fair clustering (or assignment) under bounded cost is 

NP-hard
◦ Given a vanilla approximation, there are 

approximations for the fair bounded cost problem 

Normal linear program

Minimize: 𝑏𝑏𝑅𝑅𝑐𝑐𝑡𝑡(𝑆𝑆)

Subject to: α𝑖𝑖|𝐶𝐶| ≤ |𝑅𝑅 𝐶𝐶 | ≤ β𝑖𝑖|𝐶𝐶|

New linear program

Minimize: ∑Δ or max Δ or max max …

Subject to: 𝑏𝑏𝑅𝑅𝑐𝑐𝑡𝑡 𝑆𝑆 ≤ 𝑏𝑏𝑢𝑢𝑢𝑢𝑏𝑏𝑟𝑟 𝑏𝑏𝑅𝑅𝑏𝑏𝑏𝑏𝑟𝑟

and: α𝑖𝑖 − Δ 𝐶𝐶 ≤ 𝑅𝑅 𝐶𝐶 ≤ (β𝑖𝑖+Δ)|𝐶𝐶|

https://arxiv.org/abs/2106.07239


Summary: Bounded Representation
Two versions:

◦ α-capped clustering
◦ Solved with very little to no additive fairness violation [AEKM 19]

◦ α, β-bounded, with upper and lower bound vectors
◦ Solved with additive fairness violation [BCFN 19]

Variants explored:
◦ α-capped correlation clustering
◦ α-capped hierarchical clustering
◦ α, β-bounded probabilistic clustering
◦ α, β-bounded clustering with bounded cost

However, both are stated 
in terms of “union closed” 

constraints

https://arxiv.org/pdf/1905.12753.pdf
https://papers.nips.cc/paper/2019/file/fc192b0c0d270dbf41870a63a8c76c2f-Paper.pdf


Demographic Fairness:
Bounds on Chosen Centers



Demographic Fairness –
Bounds on Chosen Centers

Data summarization: do a k-
clustering. The resulting centers 
are then outputted as 
representatives of the data set.

Fairness: for every color i, there 
must be at least ki centers of 
color i. 

Let kred = kblue = kgreen = 1
This clustering is not fair.
However this alternate clustering is fair



Data Summarization [KAM 19, JNN 20]
First introduced the fairness with regards to 
bounds on chosen centers.

Results [KAM 19]
◦ Fair data summarization for k-center has a 5-

approximation on 2 colors (tight) that runs in time 
O(kn)

◦ Fair data summarization for k-center has a (3×2c-1 –
1) approximation on c colors that runs in time 
O(kc2n + kc4)

Results [JNN 20]
◦ Fair data summarization for k-center has a 3-

approximation on c colors (tight) that runs in time 
O(kn)

https://arxiv.org/pdf/1901.08628.pdf
http://proceedings.mlr.press/v119/jones20a/jones20a.pdf
https://arxiv.org/pdf/1901.08628.pdf
http://proceedings.mlr.press/v119/jones20a/jones20a.pdf


Diversity-Aware k-Means [TOG 21]
NP-Hard? FPT(k)? Approx factor Approx method

General case Yes No X X

c colors
�
𝑖𝑖∈[𝑐𝑐]

𝑘𝑘𝑖𝑖 = 𝑘𝑘
Yes ? 8 LP

c colors
�
𝑖𝑖∈[𝑐𝑐]

𝑘𝑘𝑖𝑖 < 𝑘𝑘
Yes ? 8 O(kc-1) LP calls

2 colors 𝑘𝑘1 + 𝑘𝑘2 = 𝑘𝑘 Yes ? 3+ε Local search

2 colors 𝑘𝑘1 + 𝑘𝑘2 < 𝑘𝑘 Yes ? 3+ε O(k) local 
search calls

https://arxiv.org/pdf/2106.11696.pdf


Demographic Fairness:
Proportionality



Demographic Fairness –
Proportionality

Idea: Every set of at least n/k points is entitled 
to its own cluster.

Blocking coalition: a set of ρn/k points such 
that we can add a center that is closer to all 
points in the set than their assigned center.

• “ρ-proportional”

Benefits

• Pareto optimality: Let X and X’ be two 
proportional solutions. Then there is some 
point that X “treats” at least as well as X’.

• Oblivious: Independent of sensitive 
attributes.

• Robust: Outliers cannot form coalitions.

• Scale invariant



Proportionally Fair Clustering [CFLM 19]
Introduced the problem of proportionally fair 
clusterings.

Hardness
◦ There may be no 2-proportional solution

Results
◦ (1 + 2)-proportional solution
◦ 𝑂𝑂(1)-proportional solution 8-approximates k-median
◦ Uniform random sampling approximately preserves the 

proportionality of any set of centers w.h.p.
◦ Good heuristic local search algorithm that finds nearly 

proportional solutions

http://proceedings.mlr.press/v97/chen19d.html


More Proportionally Fair Clustering [MS 20]
Considers [CFLM 19] in metric spaces defined by different norms.

Results
◦ 1 + 2 general approximation is really a 2-approximation for L2

◦ Shows tightness of 1 + 2 approximation for L1 and L∞

◦ In L2, we cannot do better than 2/ 3
◦ In L1 and L∞, we cannot do better than 1.4
◦ Using tree distance or graph distance when 𝑘𝑘 ≥ 𝑏𝑏/2, exact proportionality exists
◦ In L2 and many dimensions, checking existence is NP-hard, and the original algorithm is only in NP (it is a 

PTAS in the dimensionality)
◦ When there are infinitely many centers, proportionality preservation under random sampling holds even 

in  L2 and many dimensions

https://drops.dagstuhl.de/opus/volltexte/2020/12492/pdf/LIPIcs-ICALP-2020-85.pdf
http://proceedings.mlr.press/v97/chen19d.html


Demographically Fair 
Clustering with Outliers



k-Clustering with 
Outliers
 Points 𝒞𝒞 in metric space with 

distance 𝑟𝑟:𝒞𝒞2 → ℝ≥0

 Pick 𝑆𝑆 ⊆ 𝒞𝒞 with 𝑆𝑆 ≤ 𝑘𝑘

 Pick 𝒜𝒜 ⊆ 𝒞𝒞 with 𝒜𝒜 ≥ 𝑚𝑚

 Construct 𝜑𝜑:𝒜𝒜 → 𝑆𝑆 such that 
some objective is minimized

 Allowed to exclude a certain 
number of points from the 
optimization objective:
 Robustness: Avoid noise in 

the data
 Scarce resources: Servicing 

only a certain fraction of 
the population is 
acceptable



Motivational Examples
 Clustering Setting: 

 The points are users of a website. 
 The website wants to cluster its users in groups of high similarity,  so that it offers relevant recommendations.
 The cluster center is thought of as the most representative point of the cluster.
 Points with unique profiles might be excluded.

 Facility Location Setting:
 Points correspond to cities/towns/counties.
 A state wants to place vaccination sites in a metric space.
 Each point should have a vaccination center in close vicinity.
 Due to scarce resources, it may be acceptable to provide a good covering guarantee to only a fraction of 

the population.



Bias in Clustering 
with Outliers
 Being an outlier is 

disadvantageous!!!
 Example 1: Outliers will not 

receive any 
recommendations 

 Example 2: Outliers will not 
enjoy close access to a 
vaccination center

 Suppose the points of 𝒞𝒞 come 
from 𝛾𝛾 demographic groups 
𝒞𝒞1, … ,𝒞𝒞𝛾𝛾.

 A solution can be biased if it 
disproportionately views points 
from certain groups as outliers.



Fair Clustering with Outliers
 Proposed fix:
 For each group 𝒞𝒞𝑙𝑙 we are given a value 𝑚𝑚𝑙𝑙 ≥ 0
 Instead of 𝒜𝒜 ≥ 𝑚𝑚, we now require 
𝒜𝒜 ∩ 𝒞𝒞𝑙𝑙 ≥ 𝑚𝑚𝑙𝑙 for every 𝑏𝑏 ∈ 𝛾𝛾

Example with 𝑚𝑚𝑟𝑟𝑒𝑒𝑟𝑟 = 5 and 𝑚𝑚𝑔𝑔𝑟𝑟𝑒𝑒𝑒𝑒𝑔𝑔 = 2
 Arbitrary 𝑚𝑚𝑙𝑙 values can capture a 
plethora of fairness scenarios
 Equitable treatment, e.g., 𝑚𝑚𝑙𝑙 ≥ |𝒞𝒞𝑙𝑙|/2 for all 
𝑏𝑏 ∈ 𝛾𝛾
 Preferential treatment, e.g., give a higher 

coverage guarantee to demographics that really 
need it



Results

 The problem has only been studied for the k-center objective, i.e., minimize max
𝑗𝑗∈𝒞𝒞

𝑟𝑟(𝑗𝑗,𝜑𝜑(𝑗𝑗)), under the name 

Fair Colorful k-Center
 It was introduced by Bandyapadhyay et al. (“A Constant Approximation for Colorful k-Center”- ESA 2019), 

who gave a 17-approximation algorithm for it in the Euclidean plane,  when 𝛾𝛾 = 𝑂𝑂 1 .
 Anegg et al. (“A Technique for Obtaining True Approximations for k-Center with Covering Constraints”) and 

Jia et al. (“Fair Colorful k-Center Clustering”) independently gave a 4-approximation and a 3-approximation 
respectively, both appearing in IPCO 2020.

 Both of the above algorithms work for general metrics, when 𝛾𝛾 = 𝑂𝑂(1).
 Anegg et al. also showed that when 𝛾𝛾 is not a constant, there cannot exist any non-trivial approximation for 

the problem, unless P=NP.



Socially Fair k-Clustering



Motivation
In many clustering or facility location applications the quantity is 𝑟𝑟 𝑗𝑗,𝜑𝜑 𝑗𝑗
(referred to as “assignment distance”) is what really matters.
 Clustering: It measures how representative 𝜑𝜑 𝑗𝑗 is for 𝑗𝑗.
 Facility Location: It represents the distance 𝑗𝑗 needs to travel in order to reach its service 

provider 𝜑𝜑 𝑗𝑗 .

The smaller 𝑟𝑟 𝑗𝑗,𝜑𝜑 𝑗𝑗 is the more satisfied the point 𝑗𝑗.
1) Recall the previously mentioned recommendation system application.
2) Recall the previously mentioned vaccination sites allocation application.

 Conclusion: If 𝒞𝒞 consists of 𝛾𝛾 demographic groups 𝒞𝒞1, … ,𝒞𝒞𝛾𝛾, then we should 
be fair in terms of the assignment distances provided to the points of different 
groups. 



Example of a Biased Solution



Results
 The problem was introduced independently by Ghadiri et al (“Socially Fair 𝑘𝑘-Means Clustering”) 
and Abbasi et al. (“Fair Clustering via Equitable Group Representations”) at FAccT 2021.

 Both papers demonstrated an 𝑂𝑂(𝛾𝛾)-approximation algorithm.

Makarychev and Vakilian (“Approximation Algorithms for Socially Fair Clustering” – COLT 2021) 
gave an 𝑂𝑂( 𝑙𝑙𝑙𝑙𝑔𝑔𝛾𝛾

𝑙𝑙𝑙𝑙𝑔𝑔𝑙𝑙𝑙𝑙𝑔𝑔𝛾𝛾
)-approximation algorithm. They also showed that this is the best possible 

approximation ratio for the problem.

Goyal and Jaiswal (“Tight FPT Approximation for Socially Fair Clustering” – Arxiv 2021) give a 

tight (3+ε)-approximation algorithm for the problem, that runs in FPT time of 𝑘𝑘
𝜀𝜀

𝑘𝑘
.
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