Individual Fairness in
Clustering




High-Level Motivation

» Demographic Fairness: Treat each group of points fairly, with respect to how other groups are being
treated or with respect to the specific needs of the group at hand.

» Individual Fairness: Treat each individual point fairly, with respect to how other points are being treated
or with respect to its specific needs.

»Does demographic fairness imply individual fairness?
+»* View each point as a singleton group.
¢ The concepts of group fairness become vague or ill-defined in this case:
= Balance: Leads to a single cluster solution
= Proportionality: Each point is entitled to each its own cluster?
= Socially fair k-clustering: Reduces to k-center

» Demographic fairness cannot adequately capture any individual needs of points.



The Seminal Work of Dwork et al.

» A very important work in the area of Individual Fairness

» Dwork et al. (“Fairness Through Awareness” — ITCS 2012) introduced a ground breaking
concept of individual fairness in the context of classification.

Similar individuals should be treated similarly

> It will help us in our taxonomy of individually fair notions for clustering
1) Definitions that follow the Dwork et al. paradigm
2) Definitions that diverge from it



Individually-Fair Clustering
Models that Follow the
Dwork et al. Paradigm




The Dwork et al. Paradigm in Clustering

Similar individuals should be treated similarly

» Two questions that need to be answered:
1) How can we define similarity in the context of clustering?
2) What constitutes similar treatment in a clustering setting?

» The first question is not really important.

» The second question is of much more significance.



Similar treatment in terms of same
cluster placement

> Motivational Example:
** Suppose a company wants to cluster its employees into k groups

%* People in the first cluster will receive the highest amount of raise, the people in the second
cluster the second highest raise, and so on.

+* Suppose that employee X is very similar to employee Y.

s If Y is placed in a cluster that receives a better amount of raise, then X would arguably feel
unfairly treated.

» In such cases, similar points should be placed in the same cluster



Probabilistic Pairwise Fairness —
Definition of Similarity

> Introduced by Brubach et al. (“A Pairwise Fair and Community-preserving
Approach to k-Center Clustering” — ICML 2020)

» Definition of similarity:

% For every pair of points j,j’ € C we are given a value Y; jr € [0,1] indicating their true
similarity.

* The smaller y; ;, is the more similar the two points.

» The values 1 can be different from the metric d:
1) Encoding of redundant features in d
2) Y can be the similarity as perceived by the individuals



Probabilistic Pairwise Fairness —
Definition of Similar Treatment

» How can we mitigate unfair behavior?

» Avoid situations where two similar points are deterministically separated
Randomization can imply fairness

> Seek a randomized solution that separates j, j' with probability at most Vi
% Choose S with |S| < k
¢ Construct efficiently sampleable distribution D over assignments @: C — S such that

SoleW) # oGO =¥

** Minimize some metric related objective



Probabilistic Pairwise Fairness - Results

» Brubach et al. (“A Pairwise Fair and Community-preserving Approach to k-Center Clustering” —
ICML 2020) introduced the problem and gave a logk-approximation algorithm for the k-center
objective.

d(];j),l},forsomeR > (.

** The algorithm works when y; ;, = {

* Very efficient algorithm
** Bounded PoF

» Brubach et al. (“Fairness, Semi-Supervised Learning, and More: A General Framework for
Clustering with Stochastic Pairwise Constraints” — AAAI 2021) gave constant factor
approximations for all k-center, k-median and k-means

+** The values l/)j,j, are arbitrary
+* Not that efficient — LP based



Distributional Individual Fairness

> Introduced by Anderson et al. (“Distributional Individual Fairness in Clustering” — Arxiv 2020).

» Similarity defined exactly as in Brubach et al. That is with values v; ;,
> Pick S € C with |S| <k
» For each j € C find distribution ¢; over §

» Fairness constraint:
** Metric D measuring statistical proximity

< D(pj, ;1) <V

» Difference with the model of Brubach et al.
¢ Brubach et al. return an actual assignment ¢:C — S

¢ Brubach et al. upper bound the separation probability
% Example: For j, j' both ¢; and ¢jr are the uniform distribution over S

» Anderson et al. give constant factor approximation algorithms for all k-center, k-median and k-means



Similar Treatment is
Terms of the
Assignment Distance

» In many applications the o
quantity d j,(p(]'))
(assignment distance) is what
really matters

R/

%* Clustering: It measures
how representative ¢ (j)
is for J.

% Facility Location: It

represents the distance j

needs to travel in order to
reach its service provider

0(j).

> The smaller d(j, p(j)) is the
more satisfied the point j.

» Suppose j' is similar to j and

d(j', 9(") < d(j, ().

Jj is justified to feel unfairly
treated




Motivational Example

» The points of C correspond to users of an e-commerce site.

> d(j,j") measures how similar the profiles of j and j' are.

» The website wants to choose k representative users S € C (according to some objective
function) and construct an assignment @:C — S.

» User j will receive recommendations based on ¢ (j)’s profile.
» The smaller d(j, (p(]')) is the more relevant the recommendations j receives.

> If j considers j' as similar to itself, then it perceives d(j’, (")) < d(j, ¢(j)) as unfair
treatment.



a-Equitable k-Center

» Introduced by Chakrabarti et al. (“A New Notion of Individually Fair Clustering: a-Equitable
k-Center” — AISTATS 2022)

» Every point j has a set of other points §; < C that it perceives as similar to itself
+¢* This is how similarity is modeled in this work
+“* Has advantages over the modeling with the 1 values: more easily constructable

» We are also given avalue a > 1.

» Ask for S € C (|S| < k) and assignment @: C — S that minimize the k-center objective
max d(j, ¢(j)) -

JEC
> Fairness Constraint: For(ever)yj € Candj' € §; ensure that d(j, o)) <a-d(j’,e(")
a(j.e(j)

- — remains
a(i'eU")

** The smaller a is the smaller



The parameter a

| aliol
» The smaller a is the smaller (], QD(]_z)
a(j'eG"n)
remains.
ca=4
ca=1

» A value of a close to 1 would give the most
equitable/fair solution

» For what values of a is the problem well-

defined? ﬂ

** For a < 2 there exist instances that admit no
feasible solution

** For a = 2 we can always find a feasible solution O




The results of Chakrabarti et al.

> A very efficient algorithms that returns a solution of cost 5(R* + R,;,)
** R* is the value of the optimal solution

“ Ry = max d(j,j)
JEC,J'ES;

» When d is a good estimate of similarity: R,,, = O(R™)

» Under some mild conditions on the sets §; the algorithm has bounded PoF



Notions of Individual
Fairness in Clustering that
do not follow the Dwork et
al. paradigm




A Center in my Neighborhood

» Suppose we want to solve a classical k-
clustering problem on a set of points C

“*Find SCC (| S|<k) and assignment ¢:C—>S that
Yiecd(), go(i))p is minimized

» Even though the global objective function might
be minimized, individual points may have
different requirement in terms of d(j,¢(j))

**Recall the vaccine site allocation example.

»Each j has a value 13, and we should make sure
that d(j,@(j))< 7



Results

» Jung et al. (“A Center in Your Neighborhood: Fairness in Facility Location” — FORC 2020)
introduced the problem

¢ Important result: Even finding a feasible solution to the problem is NP-hard.

» Goal: Find (a, B)-bicriteria algorithms:
* Yieed( (D)’ <a -OPT
= d(j,p(j))< B - rj for every j
» A series of papers gave increasingly better results:

1) Mahabadi and Vakilian (“Individual Fairness for k-Clustering”- ICML 2020). (O (p), 7)-bicriteria
2) Chakrabarty and Negahbani (“Better Algorithms for Individually Fair k-Clustering” — NeurlPS 2021)

(277, 8)-bicriteria

3) Vakilian and Yalginer (“Improved Approximation Algorithms for Individually Fair Clustering” — AISTATS
2022) (16P, 3)-bicriteria



Individual Fairness in Clustering with
Outliers

»Pick S € Cwith [S| < k
»Pick A € C with |A| = m (points to be clustered)

»Being an outlier is disadvantageous!!!
»We have seen how to protect against demographic bias
»What can be interpreted as bias against individuals?

Deterministically be chosen as an outlier in every computed
solution



Randomization saves the day: A lottery model
for individually fair clustering with outliers

» For each j € C we are given a value p; € [0,1]

» We want a distribution D over solutions (S, A) such that:
1) Forevery (S, A) drawn from D we have |S| < kand |A| = m.

. - :
2) (S,E§~2)[] € A] = pjforeveryj €C

3) Some objective is minimized

» We avoid scenarios where certain points are deterministically chosen as outliers

»Through the values p; we can capture a plethora of fairness concepts:
<+ Equitable treatment: p; is the same for all points

<+ Preferential treatment: Points in greater need of service get a higher p; value



Results

» The problem has only been studied under the k-center objective.

» It was introduced by Harris et al. (“A Lottery Model for Center-Type Problems With Outliers” —
APPROX-RANDOM 2017)

» Harris et al. gave a pseudo 2-approximation algorithm.
% In every solution drawn from D the coverage guarantee is (1 — &)m

* i > — .
(S,E§~D[J € A]=(1 €)Pj

L)

4

)

L)

» Anegg et al. (“A Technique for Obtaining True Approximations for k-Center with Covering
Constraints” — IPCO 2020) gave a true 4-approximation algorithm.



Fairness based on average distance to
the points in your cluster

» Motivational Example:

* Suppose a company wants to cluster its P
employees into k groups, based on their P 'l b Y
performance rating for some specific year. T, 4 ;

“* Let’s assume that people in the first cluster O O O
will receive the highest amount of raise, the { O | O
people in the second cluster the second I Y
highest raise, and so on. D ﬁo f

+* Consider some employee X placed in some Iy O : 'Hﬂ 2
cluster C. Let Cy be the average distance of X F . SR 4
to the rest of the points in C. O T

** If there exists cluster W, with Wy be the
average distance of X to the of the points in
W, such that Wy < Cy, then X would arguably
feel unfairly treated



Formal Definition and Results

» Given a set of points C, partition it into k sets Cy, ..., Cj, such that:
1 o 1 . Lo
Zjlecid(];] ) < |C_i’|2jleei, d(j,j) foralli" #i

|Ci|—1

% Foreveryi € [k] and eachj € C;,

» The problem was introduced by Kleindessner et al. (“A Notion of Individual Fairness for
Clustering” — Arxiv 2020).

» Main result: For k = 2, it is NP-hard to decide if such a clustering exists

» When the metric space is the Euclidean line, the problem can be solved efficiently.
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