
Individual Fairness in 
Clustering



High-Level Motivation
 Demographic Fairness: Treat each group of points fairly, with respect to how other groups are being 
treated or with respect to the specific needs of the group at hand.

 Individual Fairness: Treat each individual point fairly, with respect to how other points are being treated 
or with respect to its specific needs.

Does demographic fairness imply individual fairness?
 View each point as a singleton group.
 The concepts of group fairness become vague or ill-defined in this case:
 Balance: Leads to a single cluster solution 
 Proportionality: Each point is entitled to each its own cluster?
 Socially fair k-clustering: Reduces to k-center

 Demographic fairness cannot adequately capture any individual needs of points.



The Seminal Work of Dwork et al.
 A very important work in the area of Individual Fairness

 Dwork et al. (“Fairness Through Awareness” – ITCS 2012) introduced a ground breaking 
concept of individual fairness in the context of classification.

Similar individuals should be treated similarly

 It will help us in our taxonomy of individually fair notions for clustering
1) Definitions that follow the Dwork et al. paradigm
2) Definitions that diverge from it



Individually-Fair Clustering 
Models that Follow the 
Dwork et al. Paradigm



The Dwork et al. Paradigm in Clustering

Similar individuals should be treated similarly

 Two questions that need to be answered:
1) How can we define similarity in the context of clustering?
2) What constitutes similar treatment in a clustering setting?

 The first question is not really important. 

 The second question is of much more significance.



Similar treatment in terms of same 
cluster placement
Motivational Example:
 Suppose a company wants to cluster its employees into k groups
 People in the first cluster will receive the highest amount of raise, the people in the second 

cluster the second highest raise, and so on.
 Suppose that employee X is very similar to employee Y.
 If Y is placed in a cluster that receives a better amount of raise, then X would arguably feel 

unfairly treated.

 In such cases, similar points should be placed in the same cluster



Probabilistic Pairwise Fairness –
Definition of Similarity
 Introduced by Brubach et al. (“A Pairwise Fair and Community-preserving 
Approach to k-Center Clustering” – ICML 2020)

 Definition of similarity:
 For every pair of points 𝑗𝑗, 𝑗𝑗′ ∈ 𝒞𝒞 we are given a value 𝜓𝜓𝑗𝑗,𝑗𝑗′ ∈ [0,1] indicating their true 

similarity.
 The smaller 𝜓𝜓𝑗𝑗,𝑗𝑗′ is the more similar the two points.

 The values 𝜓𝜓 can be different from the metric 𝑑𝑑:
1) Encoding of redundant features in 𝑑𝑑
2) ψ can be the similarity as perceived by the individuals



Probabilistic Pairwise Fairness –
Definition of Similar Treatment
 How can we mitigate unfair behavior?

 Avoid situations where two similar points are deterministically separated

Randomization can imply fairness

 Seek a randomized solution that separates 𝑗𝑗, 𝑗𝑗𝑗 with probability at most 𝜓𝜓𝑗𝑗,𝑗𝑗′
 Choose 𝑆𝑆 with 𝑆𝑆 ≤ 𝑘𝑘
 Construct efficiently sampleable distribution 𝒟𝒟 over assignments 𝜑𝜑:𝒞𝒞 → 𝑆𝑆 such that

Pr
φ~𝒟𝒟

[𝜑𝜑 𝑗𝑗 ≠ 𝜑𝜑(𝑗𝑗′)] ≤ 𝜓𝜓𝑗𝑗,𝑗𝑗′

Minimize some metric related objective



Probabilistic Pairwise Fairness - Results
 Brubach et al. (“A Pairwise Fair and Community-preserving Approach to k-Center Clustering” –
ICML 2020) introduced the problem and gave a 𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘-approximation algorithm for the k-center 
objective.

 The algorithm works when 𝜓𝜓𝑗𝑗,𝑗𝑗′ = {𝑑𝑑 𝑗𝑗,𝑗𝑗′

𝑅𝑅
, 1} , for some 𝑅𝑅 > 0.

 Very efficient algorithm
 Bounded PoF

 Brubach et al. (“Fairness, Semi-Supervised Learning, and More: A General Framework for 
Clustering with Stochastic Pairwise Constraints” – AAAI 2021) gave constant factor 
approximations for all k-center, k-median and k-means
 The values 𝜓𝜓𝑗𝑗,𝑗𝑗′ are arbitrary
 Not that efficient – LP based



Distributional Individual Fairness
 Introduced by Anderson et al. (“Distributional Individual Fairness in Clustering” – Arxiv 2020).

 Similarity defined exactly as in Brubach et al. That is with values 𝜓𝜓𝑗𝑗,𝑗𝑗′

 Pick 𝑆𝑆 ⊆ 𝒞𝒞 with 𝑆𝑆 ≤ 𝑘𝑘
 For each 𝑗𝑗 ∈ 𝒞𝒞 find distribution 𝜑𝜑𝑗𝑗 over 𝑆𝑆
 Fairness constraint:
Metric 𝐷𝐷 measuring statistical proximity
 𝐷𝐷 𝜑𝜑𝑗𝑗 ,𝜑𝜑𝑗𝑗′ ≤ 𝜓𝜓𝑗𝑗,𝑗𝑗′

 Difference with the model of Brubach et al.
 Brubach et al. return an actual assignment 𝜑𝜑:𝒞𝒞 → 𝑆𝑆
 Brubach et al. upper bound the separation probability 
 Example: For 𝑗𝑗, 𝑗𝑗𝑗 both 𝜑𝜑𝑗𝑗 and 𝜑𝜑𝑗𝑗′ are the uniform distribution over 𝑆𝑆

 Anderson et al. give constant factor approximation algorithms for all k-center, k-median and k-means



Similar Treatment is 
Terms of the 
Assignment Distance
 In many applications the 

quantity 𝑑𝑑 𝑗𝑗,𝜑𝜑 𝑗𝑗
(assignment distance) is what 
really matters
 Clustering: It measures 

how representative 𝜑𝜑 𝑗𝑗
is for 𝑗𝑗.

 Facility Location: It 
represents the distance 𝑗𝑗
needs to travel in order to 
reach its service provider 
𝜑𝜑 𝑗𝑗 .

 The smaller 𝑑𝑑 𝑗𝑗,𝜑𝜑 𝑗𝑗 is the 
more satisfied the point 𝑗𝑗.

 Suppose 𝑗𝑗𝑗 is similar to 𝑗𝑗 and 
𝑑𝑑 𝑗𝑗′,𝜑𝜑 𝑗𝑗′ ≪ 𝑑𝑑 𝑗𝑗,𝜑𝜑 𝑗𝑗 .

𝑗𝑗 is justified to feel unfairly 
treated



Motivational Example
 The points of 𝒞𝒞 correspond to users of an e-commerce site. 

 𝑑𝑑(𝑗𝑗, 𝑗𝑗𝑗) measures how similar the profiles of 𝑗𝑗 and 𝑗𝑗𝑗 are.

 The website wants to choose 𝑘𝑘 representative users 𝑆𝑆 ⊆ 𝒞𝒞 (according to some objective 
function) and construct an assignment 𝜑𝜑:𝒞𝒞 → 𝑆𝑆.

 User 𝑗𝑗 will receive recommendations based on 𝜑𝜑(𝑗𝑗)’s profile.

 The smaller 𝑑𝑑 𝑗𝑗,𝜑𝜑 𝑗𝑗 is the more relevant the recommendations 𝑗𝑗 receives.

 If 𝑗𝑗 considers 𝑗𝑗𝑗 as similar to itself, then it perceives 𝑑𝑑 𝑗𝑗′,𝜑𝜑 𝑗𝑗′ ≪ 𝑑𝑑 𝑗𝑗,𝜑𝜑 𝑗𝑗 as unfair 
treatment.



α-Equitable k-Center
 Introduced by Chakrabarti et al. (“A New Notion of Individually Fair Clustering: α-Equitable 
k-Center” – AISTATS 2022)
 Every point 𝑗𝑗 has a set of other points 𝒮𝒮𝑗𝑗 ⊆ 𝒞𝒞 that it perceives as similar to itself
 This is how similarity is modeled in this work
 Has advantages over the modeling with the 𝜓𝜓 values: more easily constructable

We are also given a value 𝛼𝛼 ≥ 1.
 Ask for 𝑆𝑆 ⊆ 𝒞𝒞 ( 𝑆𝑆 ≤ 𝑘𝑘) and assignment 𝜑𝜑:𝒞𝒞 → 𝑆𝑆 that minimize the k-center objective 
max
𝑗𝑗∈𝒞𝒞

𝑑𝑑(𝑗𝑗,𝜑𝜑(𝑗𝑗)) .

 Fairness Constraint: For every 𝑗𝑗 ∈ 𝒞𝒞 and 𝑗𝑗𝑗 ∈ 𝒮𝒮𝑗𝑗 ensure that 𝑑𝑑 𝑗𝑗,𝜑𝜑 𝑗𝑗 ≤ 𝛼𝛼 � 𝑑𝑑 𝑗𝑗′,𝜑𝜑 𝑗𝑗′
 The smaller α is the smaller 𝑑𝑑 𝑗𝑗,𝜑𝜑 𝑗𝑗

𝑑𝑑 𝑗𝑗′,𝜑𝜑 𝑗𝑗′
remains



The parameter α
 The smaller α is the smaller 𝑑𝑑 𝑗𝑗,𝜑𝜑 𝑗𝑗

𝑑𝑑 𝑗𝑗′,𝜑𝜑 𝑗𝑗′
remains.
 α = 4
 α = 1

 A value of α close to 1 would give the most 
equitable/fair solution

 For what values of α is the problem well-
defined?
 For 𝑎𝑎 < 2 there exist instances that admit no 

feasible solution
 For 𝑎𝑎 ≥ 2 we can always find a feasible solution



The results of Chakrabarti et al. 
 A very efficient algorithms that returns a solution of cost 5 𝑅𝑅∗ + 𝑅𝑅𝑚𝑚
 𝑅𝑅∗ is the value of the optimal solution
 𝑅𝑅𝑚𝑚 = max

𝑗𝑗∈𝒞𝒞,𝑗𝑗′∈𝒮𝒮𝑗𝑗
𝑑𝑑(𝑗𝑗, 𝑗𝑗𝑗)

When 𝑑𝑑 is a good estimate of similarity: 𝑅𝑅𝑚𝑚 = 𝑂𝑂(𝑅𝑅∗)

 Under some mild conditions on the sets 𝒮𝒮𝑗𝑗 the algorithm has bounded PoF



Notions of Individual 
Fairness in Clustering that 
do not follow the Dwork et 
al. paradigm



A Center in my Neighborhood
 Suppose we want to solve a classical k-
clustering problem on a set of points 𝒞𝒞
Find 𝑆𝑆⊆𝒞𝒞 (|𝑆𝑆|≤𝑘𝑘) and assignment 𝜑𝜑:𝒞𝒞→𝑆𝑆 that 
∑𝑗𝑗∈𝒞𝒞 𝑑𝑑 𝑗𝑗,𝜑𝜑 𝑗𝑗 𝑝𝑝

is minimized

 Even though the global objective function might 
be minimized, individual points may have 
different requirement in terms of 𝑑𝑑(𝑗𝑗,𝜑𝜑(𝑗𝑗))
Recall the vaccine site allocation example. 

Each 𝑗𝑗 has a value 𝑟𝑟𝑗𝑗, and we should make sure 
that 𝑑𝑑(𝑗𝑗,𝜑𝜑(𝑗𝑗))≤ 𝑟𝑟𝑗𝑗



Results
 Jung et al. (“A Center in Your Neighborhood: Fairness in Facility Location” – FORC 2020) 
introduced the problem
 Important result: Even finding a feasible solution to the problem is NP-hard.

 Goal: Find 𝛼𝛼,𝛽𝛽 -bicriteria algorithms:
 ∑𝑗𝑗∈𝒞𝒞 𝑑𝑑 𝑗𝑗,𝜑𝜑 𝑗𝑗 𝑝𝑝 ≤ 𝛼𝛼 � OPT
 𝑑𝑑(𝑗𝑗,𝜑𝜑(𝑗𝑗))≤ 𝛽𝛽 � 𝑟𝑟𝑗𝑗 for every 𝑗𝑗

 A series of papers gave increasingly better results:
1) Mahabadi and Vakilian (“Individual Fairness for k-Clustering”- ICML 2020). (𝑂𝑂 𝑝𝑝 , 7)-bicriteria
2) Chakrabarty and Negahbani (“Better Algorithms for Individually Fair k-Clustering” – NeurIPS 2021) 

(21+
2
𝑝𝑝, 8)-bicriteria

3) Vakilian and Yalçıner (“Improved Approximation Algorithms for Individually Fair Clustering” – AISTATS 
2022) (16𝑝𝑝, 3)-bicriteria



Individual Fairness in Clustering with 
Outliers
Pick 𝑆𝑆 ⊆ 𝒞𝒞 with 𝑆𝑆 ≤ 𝑘𝑘
Pick 𝒜𝒜 ⊆ 𝒞𝒞 with 𝒜𝒜 ≥ 𝑚𝑚 (points to be clustered)
Being an outlier is disadvantageous!!!
We have seen how to protect against demographic bias
What can be interpreted as bias against individuals?

Deterministically be chosen as an outlier in every computed 
solution



Randomization saves the day: A lottery model 
for individually fair clustering with outliers
 For each 𝑗𝑗 ∈ 𝒞𝒞 we are given a value 𝑝𝑝𝑗𝑗 ∈ [0,1]

We want a distribution 𝒟𝒟 over solutions (𝑆𝑆,𝒜𝒜) such that:
1) For every (𝑆𝑆,𝒜𝒜) drawn from 𝒟𝒟 we have S ≤ k and 𝒜𝒜 ≥ 𝑚𝑚.
2) Pr

S,𝒜𝒜 ~𝒟𝒟
j ∈ 𝒜𝒜 ≥ pj for every j ∈ 𝒞𝒞

3) Some objective is minimized

We avoid scenarios where certain points are deterministically chosen as outliers

Through the values 𝑝𝑝𝑗𝑗 we can capture a plethora of fairness concepts:
 Equitable treatment: 𝑝𝑝𝑗𝑗 is the same for all points
 Preferential treatment: Points in greater need of service get a higher 𝑝𝑝𝑗𝑗 value



Results
 The problem has only been studied under the k-center objective.

 It was introduced by Harris et al. (“A Lottery Model for Center-Type Problems With Outliers” –
APPROX-RANDOM 2017)

 Harris et al. gave a pseudo 2-approximation algorithm. 
 In every solution drawn from 𝒟𝒟 the coverage guarantee is 1 − 𝜀𝜀 𝑚𝑚
 Pr

S,𝒜𝒜 ~𝒟𝒟
j ∈ 𝒜𝒜 ≥ (1 − 𝜀𝜀)pj

 Anegg et al. (“A Technique for Obtaining True Approximations for k-Center with Covering 
Constraints” – IPCO 2020) gave a true 4-approximation algorithm.



Fairness based on average distance to 
the points in your cluster
Motivational Example:
 Suppose a company wants to cluster its 

employees into k groups, based on their 
performance rating for some specific year.
 Let’s assume that people in the first cluster 

will receive the highest amount of raise, the 
people in the second cluster the second 
highest raise, and so on.
 Consider some employee X placed in some 

cluster C. Let 𝐶𝐶𝑋𝑋 be the average distance of X 
to the rest of the points in C.
 If there exists cluster W, with 𝑊𝑊𝑋𝑋 be the 

average distance of X to the of the points in 
W, such that 𝑊𝑊𝑋𝑋 ≤ 𝐶𝐶𝑋𝑋, then X would arguably 
feel unfairly treated



Formal Definition and Results
 Given a set of points 𝒞𝒞, partition it into 𝑘𝑘 sets 𝒞𝒞1, … ,𝒞𝒞𝑘𝑘 such that:
 For every 𝑖𝑖 ∈ 𝑘𝑘 and each j ∈ 𝒞𝒞𝑖𝑖 ,

1
𝒞𝒞𝑖𝑖 −1

∑𝑗𝑗′∈𝒞𝒞𝑖𝑖 𝑑𝑑(𝑗𝑗, 𝑗𝑗𝑗) ≤ 1
𝒞𝒞𝑖𝑖′

∑𝑗𝑗′∈𝒞𝒞𝑖𝑖′ 𝑑𝑑(𝑗𝑗, 𝑗𝑗𝑗) for all 𝑖𝑖′ ≠ 𝑖𝑖

 The problem was introduced by Kleindessner et al. (“A Notion of Individual Fairness for 
Clustering” – Arxiv 2020).

Main result: For 𝑘𝑘 ≥ 2, it is NP-hard to decide if such a clustering exists

When the metric space is the Euclidean line, the problem can be solved efficiently.
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